

Gateway Cities Traffic Signal Synchronization and Bus Speed Improvement Project I-5/Telegraph Road Corridor

Project Status Update June 19, 2003

Today's Agenda

- Review of Overall Project
- Project Status
- LCC Recommendations
- ATMS Analysis
- Communications Analysis
- Next Steps

Original Project Area

Expanded Project Area

Project Focus – Implementing the IEN at the Local Level

Relationship with Other Projects

Work Flow Plan

Project Status

• Web Page	On-Going	
Agency Interviews	Complete	
Field Surveys	Complete	
 Operational Objectives and 	-	
City Reports	Complete	
 ATMS User Requirements 	Complete	
 ATMS Functional Requirements Complete 		
 System Integration Requirements 	Complete	
 Communication System Requirements 	Complete	
 Final System Requirements 	Complete	
 High Level Design 	Complete	
 LCC Recommendations 	Complete	
 Communications Analysis 		
General	In Review	
 Location Specific 	On Going	
 ATMS Analysis (Draft) 	In Review	
 Conceptual Design 	On Going	

Corridor Architecture

- Originally Presented in October, 2002 to PWD Meeting
- Recently updated to incorporate expanded area

Commerce LCC Location

Norwalk LCC Location

s its

Downey Host

Santa Fe Springs Host

Whittier Remote LCC Site

S

Progress Update

La Mirada LCC Location

LCC Site (DPW)

Remote LCC Site Resource Center

s its

LCC Recommendations Commerce

Rack 1 FrontView

Rack 2 FrontView

LCC Recommendations Norwalk

s.

15'

Rack 3

LCC Area IEN Client ATMS Client Workstation Workstation (LCC Telephone Printer ÷ Ð Rack 1 Rack 2 **Recommendations** Santa Fe Springs 19" 19" Server Server Monitor Monitor KVM Switch KVM Switch ATMS Database Server

LCC Recommendations – Downey 2nd Floor

LCC Recommendations Downey

Corridor Architecture

ATMS Analysis: Starting Point

- A set of requirements (from the ESGV Pilot Project)
- The County's ATMS selection process (which currently has eliminated all but two systems).
- Pomona Valley ATMS Alternative Analysis Report

Project Specific Information

- An expanded set of requirements which we have prepared for the I-5/Telegraph Road project which incorporates all of the Pilot project requirements.
 - An initial systems architecture which identifies the following systems: (*Indicates no ATMS analysis needed)

*Caltrans: CTNet *Commerce - BiTrans upgrade *Montebello (on another System e.g. Downey) *Pico Rivera (ditto or SF Springs) Downey Santa Fe Springs *La Mirada (on another system - County's) Norwalk *Whittier

Issues

- Identify a relevant sub-set of the requirements rather than an exhaustive list for comparison at this stage
- Additional Requirements that may be key selection criteria:
 - Downey: Multi-jurisdictional
 - SF Springs Traffic diversions due to rail closures
 - Commerce: Open protocols?
 - General: Integrating CCTV and CMS in the traffic control system.

ATMS Analysis Process

ATMS Recommendations

City	Hosting ATMS Server For	Controllers to be supported	Recommended ATMS Options*
Commerce	Commerce	• Type 170	 Upgrade existing QuicNet II to QuicNet IV Change out the system to one of the following: <i>icons</i>™/i2TMS KITS TranSuite Pyramids
Downey	DowneyMontebello	 Type 170 Type 2070 (Downey future) 	 <i>icons</i>™/i2TMS Pyramids KITS
Santa Fe Springs	 Santa Fe Springs Pico Rivera Whittier 	Type 170Econolite ASC/2	 <i>icons</i>™/i2TMS TranSuite
Norwalk	Norwalk	Econolite ASC/2	 <i>icons</i>™/i2TMS TranSuite

Identify Recommended

Solutions

Apply Recommendations

Recommendations

Physical Communication Architecture

Conclusions:

- Main points:
 - IEN as a Virtual Private Network "backbone"
 - Individual links (LCC to LCC) may be leased or agency owned depending upon:
 - the logical communications links to be supported on that physical link
 - Geographic situation
 - Field Network
 - Backbone with last mile circuits

Field Communication Architecture

I-5/Telegraph Road Corridor

IC WOR

Recommendations

- Field to Central Communication (CCTV Video Images)
 - Scenario # 1: Hardwire cable media exists or will be installed Fiber: Ethernet IP TWP: DSL
 - Scenario # 2: No existing communication and distance greater than 300 feet

Fiber: Ethernet IP or

DSL (cost issue)

 Scenario # 3: No existing communication and distance to closest Hub or LCC is less than 300 feet

Ethernet IP over SSR

Recommendations

- Field to Central Communication (controller data, CMS, and CCTV control)
 - Scenario # 1: Hardwire cable media exists or will be installed Fiber: Ethernet IP TWP: Analog modems
 - Scenario # 2: No existing communication and distance greater than 300 feet

Fiber: Fiber analog (serial devices) or Ethernet IP Leased analog or wireless IP

 Scenario # 3: No existing communication and distance to closest Hub or LCC is less than 300 feet

Ethernet IP over SSR

Recommendations

- LCC to LCC (IEN Network) Communication
 - Scenario # 1: High Speed connection (e.g intranet)_exists between two LCC locations

Use if >1.5Mps

 Scenario # 2: Hardwire cable media exists or will be installed between two LCC locations

> Fiber: Ethernet TWP: Private DSL

 Scenario # 3: High Speed Internet connection exists to one or more LCC locations

Use if >1.5Mps

 Scenario # 4: Distance between two LCC's is less than 5 miles and there is no existing communication infrastructure.

Fiber Ethernet or

Frame Relay

Communications Analysis (2)

Objective:

- Identify communications technologies specific to the project components
 - Field Communications
 - Center-to-Center

Location Specific

- Starting Point
 - Scenario Recommendations from Communications Analysis Report
 - Sub-regional TMC link excluded
- Assumptions
 - Field Communications (Data and Video)
 - Fiber backbone with tail circuits
 - Center-to-Center Communications (Data)
 - Frame Relay (if no fiber available)
 - Center-to-Center Communications (Video)
 - Internet Technology Based

Field Communication Architecture

S

Design Approach

- Use common fiber cable infrastructure across jurisdictions
 - Provides for redundancy
 - Provides path for center-to-center communications
 - Anticipated reductions in installation costs
- Communications technology to be selected per Agency
 - Assign individual fiber pairs to each jurisdiction
 - Field devices directly interconnected to parent LCCs

Design Methodology

- Route fiber-optic cable to CCTV and LCC locations
 - Connect both signals and cameras to fiber at these locations
 - Maximize number of LCCs connected
- Use tail circuits off above fiber to provide communications to other intersections
- For Tail Circuits, use the following selection priority order:
 - 1. Existing TWP
 - 2. SSR for locations with clear line of sight
 - 3. Wireless data services if service is available
 - 4. Leased telephone lines

Design Methodology (Cont.)

- Define two primary technology solutions per LCC
 - Serial (Analog)
 - Ethernet (Digital)
- Cost out the above two solutions per LCC
- Make recommendations per intersection per LCC
 - Connection method recommendation per intersection
 - Single technology recommendation per LCC
- Recommendation Criteria
 - 10 Year life cycle costs
 - Existing/planned infrastructure
 - Future expansion

Proposed Fiber Backbone

- Serial Analog (Controller Only)
 - Fiber
 - Copper
 - Wireless Serial (SSR)
 - Leased Lines Digital
 - Leased Wireless (3G Digital)

- Serial Analog (Controller and CCTV)
 - Fiber
 - Copper
 - Wireless (SSR)
 - Leased Line Digital

- Ethernet (Controller Only)
 - Fiber
 - Copper
 - Wireless (SSR)
 - Leased Line Digital
 - Leased Wireless (3G Digital)

- Ethernet (Controller and CCTV)
 - Fiber
 - Copper
 - Wireless (SSR)
 - Leased Line Digital

- Finalize Device Locations
- Complete Communications Analysis
- Develop Conceptual Design
- Develop Operations and Management Plan

Project Web Page

www.itssiemens.com

